ALPHA & OMEGA SEMICONDUCTOR

AO4702 N-Channel Enhancement Mode Field Effect Transistor with Schottky Diode

General Description

The AO4702 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. A Schottky Diode is packaged in parallel to improve device performance in synchronous recitification applications, or H-bridge configurations. *Standard Product AO4702 is Pb-free (meets ROHS & Sony 259 specifications).*

Features

$$\begin{split} V_{DS} & (V) = 30V \\ I_{D} = 11A \; (V_{GS} = 10V) \\ R_{DS(ON)} < 16m\Omega \; (V_{GS} = 10V) \\ R_{DS(ON)} < 25m\Omega \; (V_{GS} = 4.5V) \end{split}$$

SCHOTTKY

 $V_{DS}(V) = 30V, I_F = 3A, V_F < 0.5V@1A$

UIS TESTED! Rg,Ciss,Coss,Crss Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	MOSFET	Schottky	Units			
Drain-Source Voltage		V _{DS}	30		V			
Gate-Source Voltage		V _{GS}	±20		V			
	T _A =25°C	I _D	11					
Continuous Drain Current AF	T _A =70°C	Ъ	9.3		А			
Pulsed Drain Current ^B		I _{DM}	50					
Schottky reverse voltage		V _{KA}	30		V			
	T _A =25°C			4.4				
Continuous Forward Current AF	T _A =70°C	I _F		3.2	А			
Pulsed Diode Forward Current ^B		I _{FM}	Гғм 30					
	T _A =25°C	P _D	3	3	w			
Power Dissipation T _A =7			2	2	vv			
Avalanche Current ^B		I _{AR}	17		Α			
Repetitive avalanche energy 0.3mH ^B		E _{AR}	43		mJ			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C			

Thermal Characteristics: MOSFET						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{0JA}	31	40	°C/W	
Maximum Junction-to-Ambient ^A	Steady-State	Γ _{θJA}	59	75	°C/W	
Maximum Junction-to-Lead ^C	Steady-State	$R_{ ext{ heta}JL}$	16	24	°C/W	

Thermal Characteristics: Schottky					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	R _{0JA}	36	40	°C/W
Maximum Junction-to-Ambient ^A	Steady-State	ιν _θ ja	67	75	°C/W
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	25	30	°C/W

A: The value of R _{0JA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with

T $_{A}$ =25°C. The value in any given application depends on the user's specific board design.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm \theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm \theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{A}$ =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

G. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately. Rev 6 : Dec 2006

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
	Zana Cata Maltana Dasia Current	V _R =30V		0.007	0.05	
I _{DSS}	Zero Gate Voltage Drain Current (Set by Schottky leakage)	V _R =30V, T _J =125°C		3.2	10	mA
(Ger b)		V _R =30V, T _J =150°C		12	20	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ I _D =250µA	1	1.8	3	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V	40			Α
R _{DS(ON)} Sta	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =11A		13.4	16	- m0
		T _J =125°C		16.8	21	mΩ
		V _{GS} =4.5V, I _D =8A		20	25	mΩ
g fs	Forward Transconductance	V _{DS} =5V, I _D =11A		25		S
V _{SD}	Diode + Schottky Forward Voltage	I _S =1A,V _{GS} =0V		0.45	0.5	V
ls	Maximum Body-Diode + Schottky Continuous Current				5	Α
DYNAMIC	C PARAMETERS					
C _{iss}	Input Capacitance			1040	1250	pF
C _{oss}	Output Capacitance (FET+Schottky)	V _{GS} =0V, V _{DS} =15V, f=1MHz		212		pF
C _{rss}	Reverse Transfer Capacitance			121	170	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	0.35	0.7	0.85	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			19.8	24	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =11A		9.8	12	nC
Q _{gs}	Gate Source Charge	$v_{GS} = 100$, $v_{DS} = 100$, $i_D = 11A$		2.5		nC
Q _{gd}	Gate Drain Charge			3.5		nC
t _{D(on)}	Turn-On DelayTime			4.5	7	ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.35 Ω ,		3.9	7	ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		17.4	30	ns
t _f	Turn-Off Fall Time			3.2	5.7	ns
t _{rr}	Body Diode + Schottky Reverse Recovery Time	I _F =11A, dI/dt=100A/μs		19	23	ns
Q _{rr}	Body Diode + Schottky Reverse Recovery Charge	I _F =11A, dI/dt=100A/μs		9	11	nC

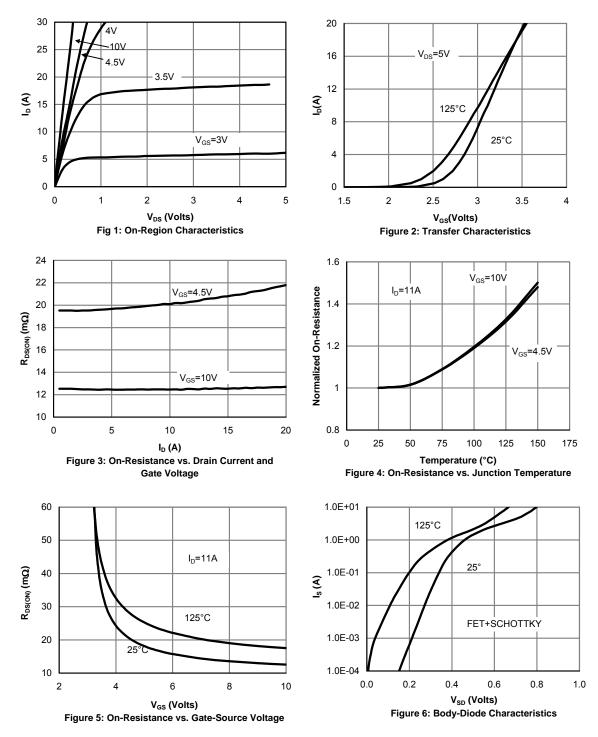
A: The value of R _{0JA} is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with

T_A=25°C. The value in any given application depends on the user's specific board design.

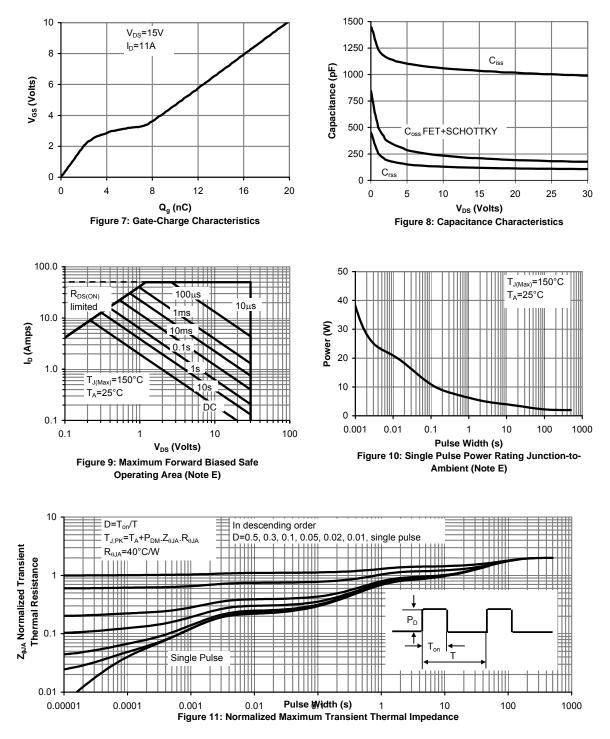
B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu$ s pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_{A}$ =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the t \leq 10s junction to ambient thermal resistance rating.


G. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

Rev 6 : Dec 2006

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS