

4 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER

General Description

- •The DPC-817 series are optically coupled isolators containing a GaAs light emitting diode and an NPN silicon phototransistor
- •The lead pitch is 2.54mm

RANK MARK.	Min. (%)	Max. (%)
L	50	100
A	80	160
В	130	260
С	200	400
D	300	600
L or A or B or C or D	50	600

Rank Table Of Current Transfer Ratio (CTR)

Notes: Conditions: I_F=5mA, V_{CE}=5V, Ta=25°C.

Pin Configuration

Features

- •Current transfer ratio (CTR: 50~600% at I_F =5mA, V_{CE} =5V)
- •High isolation voltage between input and output (Viso=5000 Vrms)
- •Creepage distance >7.62 mm
- •Operating temperature up to +110°C
- Compact small outline package
- •Pb free and RoHS compliant.
- •UL approved (No.E343249)

Applications

- Computer terminals.
- System appliances, measuring instruments.
- Registers, copiers, automatic vending machines.
- Electric home appliances, such as fan heaters, etc, of different potentials and impedances.
- Signal transmission between circuits

Pin Assignment

Pin num.	Symbol	Functions	
1	Anode	loout	
2	Cathode	Input	
3	Emitter	Output	
4	Collector	Output	

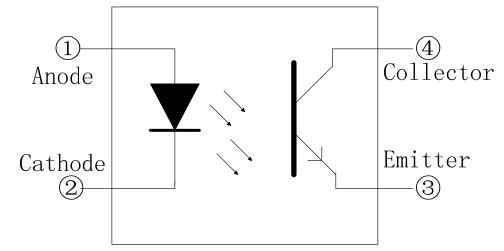
Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rating	Unit
	Forward Current	I _F	50	mA
INPUT	Reverse Voltage	V _R	6	V
	Power Dissipation	Р	70	mW
	Collector-Emitter Voltage	V _{CEO}	35	V
OUTPUT	Emitter- Collector Voltage	V _{ECO}	6	v
OUIFUI	Collector Current	I _C	50	mA
	Collector Power Dissipation	P _C	150	mW
ſ	Total Power Dissipation		200	mW
Isolation Voltage(NOTE)		V _{ISO}	5000	Vrms
Rated impulse isolation voltage		V _{IOTM}	6000	V
Rated repetitive peak isolation voltage		V _{IORM}	630	V
operat	operating Junction Temperature T_J		-40 to 85	
	Storage Temperature		-55 to 125	°C
Lead Te	Lead Temperature (Soldering, 10secs)		260	

Notes: AC For minute, R.H. =40~60%

Isolation voltage shall be measured using the following method.

(1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.


(2) The isolation voltage tester with zero-cross circuit shall be used.

(3) The waveform of applied voltage shall be a sine wave.

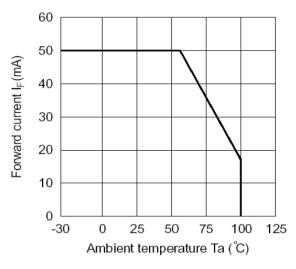
Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must

therefore not be exceeded under any conditions.

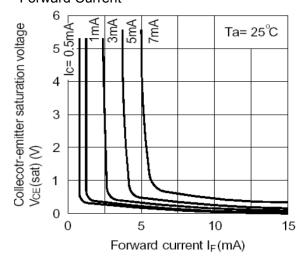
Block Diagram

Electrical Characteristics

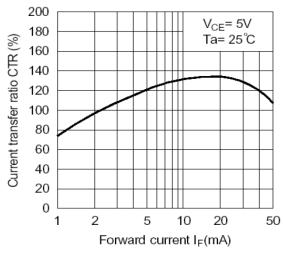
 $(T_A = 25 \text{ °C}, \text{ unless otherwise noted.})$

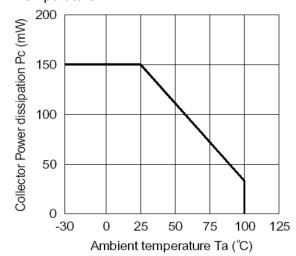

Item	Symbol	Test condition	Min	Тур	Max	Unit	
Input Section							
Forward Voltage	V _F	I _F =20mA		1.2	1.4	v	
Reverse Current	I _R	V _R =4V			10	uA	
Terminal Capacitance	Ct	V=0, f=1KHz		30	250	PF	
	C	Output Section	1				
Collector Dark Current	I _{CEO}	VCE=20V, IF=0			100	nA	
Collector-Emitter Breakdown Voltage	BV _{CEO}	I _C =0.1mA I _F =0	35			V	
Emitter-Collector Breakdown Voltage	BV _{ECO}	l _E =10μA l _F =0	6			V	
	Transfer C	haracteristic Section	-				
Collector Current	Ic	I _F =5mA	2.5		30	mA	
Current Transfer Ratio(note)	CTR	V _{CE} =5V	50		600	%	
Collector-Emitter Saturation Voltage	V _{CE} (sat)	I _F =20mA I _C = 1mA		0.1	0.2	V	
Isolation Resistance	Riso	DC500V 40~60%R.H.	5×10 ¹⁰	1×10 ¹¹			
Floating Capacitance	C _f	V=0, f=1MHz		0.6	1	pF	
Cut-Off Frequency	fc	VCE=5V,IC=2mA RL=100Ω,-3dB		80		kHz	
Response Time(Rise)	t _r	VCE=2V,IC=2mA		4	18	uS	
Response Time(Fall)	t _f	RL=100Ω		3	18	uS	

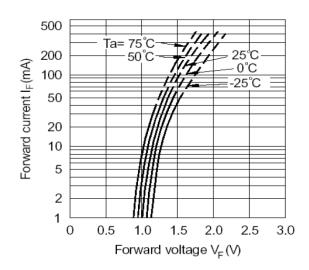
Note: CTR= $I_C / I_F \times 100\%$

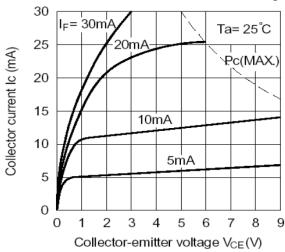


Typical performance characteristics

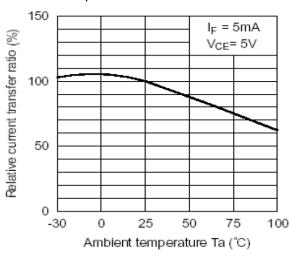

(1) Forward Current vs. Ambient Temperature


(3) Collector-emitter Saturation Voltage vs. Forward Current

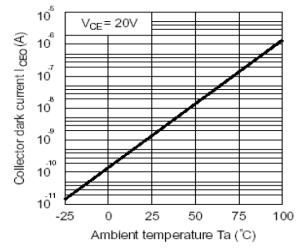

(5) Current Transfer Ratio vs. Forward Current


(2) Collector Power Dissipation vs. Ambient Temperature

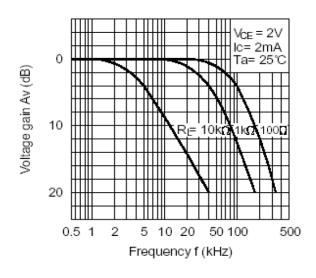
(4) Forward Current vs. Forward Voltage



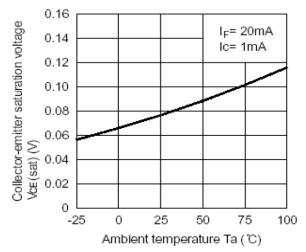
(6) Collector Current vs. Collector-emitter Voltage

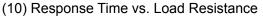


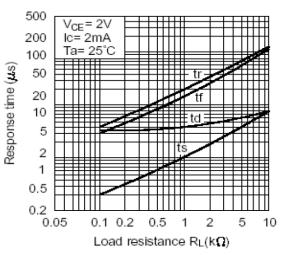
(7) Relative Current Transfer Ratio vs. Ambient Temperature

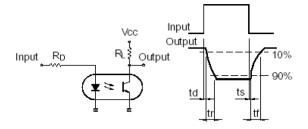


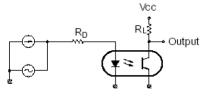
(9) Collector Dark Current vs.






(11) Frequency Response

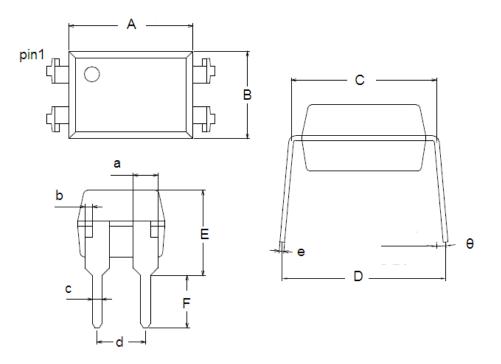

(8)Collector-emitter Saturation Voltage vs. Ambient Temperature



Test Circuit for Response Time

Test Circuit for Frequency Response

Classification	Test Item	Reference Standard	Test Conditions	Result	
		MIL-STD-750:1026	Connect with a power If=50mA		
	Operation Life	MIL-STD-883:1005	Ta=Under room temperature	0/20	
	JIS C 7021 : B-1		Test time=1,000hrs		
	High				
	Temperature		Ta=+85℃±5℃, RH=85%		
	High Humidity	JIS C 7021 :B-11	PTR=V _{CE} Absolute max rating*80%	0/20	
	Reverse Bias		Test time=1000hrs		
	(H3TRB)				
Endurance	High		Ta=+105℃±5℃		
Test	Temperature	JIS C 7021 : B- 8	PTR=V _{CE} absolute max rating	0/20	
1031	Reverse Bias	010 0 7021 . D 0	Test time=1000hrs	0/20	
	(HTRB)				
	High	MIL-STD-883:1008	High Ta=+125℃±5℃		
	Temperature	JIS C 7021 :B-10	Test time=1,000hrs	0/20	
	Storage	010 0 7021			
	Low Temperature	JIS-C-7021 :B-12	Low Ta=-55℃±5℃	0/20	
	Storage	010 0 7021	Test time=1,000hrs	0/20	
	Autoclave	JESD 22-A102-B	P=15PSIG, Ta=121℃	0/20	
	7 101001010		Humi. =100%RH, 48hrs	0,20	
		MIL-STD-202:107D	125℃ ~ 25℃ ~ -55℃ ~ 25℃		
	Temperature	MIL-STD-750:1051	30min 5min 30min 5min	0/20	
	Cycling	MIL-STD-883:1010	Test Time=20cycle	0,20	
		JIS C 7021 :A-4			
		MIL-STD-202:107D	125℃ ~-55℃		
Environmental Test	Thermal Shock	MIL-STD-750:1051	20min 20min	0/20	
		MIL-STD-883:1011	Test Time=20cycle		
	Solder	MIL-STD-202:201A	Operation heating : 300℃,		
	Resistance	MIL-STD-750:2031	within 10±1seconds.	0/20	
		JIS C 7021 :A-1			
	Solder Ability	MIL-S-883:2003	Operation heating ∶ 260°C,	0/20	
	/	JIS C 7021 :A-2	within 5±1seconds.		


Judgment Criteria Of Failure For The Reliability

Symbol	Measuring conditions	Judgment criteria for failure	
V _F (V)	lf=20mA	Over Ux1.0	
lr(uA)	Vr=4V	Over Ux1.0	
CTR(%)	lf=5mA, V _{CE} =5V	Shift>1.2	
V _{CE} (sat)	I _F =20mA, I _C = 1mA Over Ux1		
BV _{CEO}	I _C =0.1mA, I _F =0	Over Ux1.0	
BV _{ECO}	I _E =10μA, I _F =0 Over Ux1.0		

Package Information

Package type:DIP4 Unit:mm(inch)

Character	Dimension (mm)		Dimension (Inches)		
Character	Min	Мах	Min	Max	
A	6.200	6.600	0.244	0.260	
В	4.280	4.880	0.169	0.192	
С	7.62	7.620(Typ.)		0.300(Typ.)	
D	7.620	9.500	0.300	0.374	
E	4.200	4.800	0.165	0.189	
F	2.300	3.300	0.090	0.130	
а	1.2	1.4	0.047	0.055	
b	0.3	0.5	0.012	0.020	
С	0.4	0.6	0.016	0.024	
d	2.54Typ.)		0.060(Typ.)		
e	0.25(Typ.)		(Тур.)		
θ	0 ⁰	15 ⁰	00	150	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.