首页>>行业动态>>图像传感器选择标准多
阅读量:94
当涉及到技术创新时,图像传感器的选择是设计和开发各种设备过程中一个至关重要的环节,这些设备包括专业或家庭安防系统、机器人、条形码扫描仪、工厂自动化、设备检测、汽车等。选择最合适的图像传感器需要对众多标准进行复杂的评估,每个标准都会影响最终产品的性能和功能。从光学格式和、动态范围到色彩滤波阵列(CFA)、像素类型、功耗和特性集成,这些标准的考虑因素多种多样,错综复杂。
在各类半导体器件中,图像传感器可以说是最复杂的。这些传感器将光子转换为电信号,通过一系列微透镜、CFA、像素和模数转换器(ADC)产生数字输出。数字化后的信号将进行合并、缩放、裁剪、存储,并在传感器内部用于高动态范围(HDR)处理。
此外,这些传感器还嵌入了复杂的功能,如功能安全、网络安全、输出格式化和各种类型的基本图像处理。许多高分辨率和高帧率的需求促使输出信号以数千兆比特的速度通过各种类型的接口传输。此外,为了优化数字处理过程,大多数现代图像传感器都采用混合键合的堆叠晶片结构,顶层晶片包含像素和周边电路,而底层晶片则针对前面讨论的其他数字逻辑进行了优化。
这些图像传感器不仅本身非常复杂,而且在为众多设备和应用选择合适的传感器时也是如此。要成功设计和开发任何需要图像传感器的设备,了解选择标准的复杂性和细微差别至关重要。设计人员需要从众多参数中进行选择,例如分辨率、像素大小、像素类型、帧率、快门类型、光学格式、功能特性等等,这让许多人不禁要问:“我该从何入手呢?”
安森美(onsemi)对图像传感器的选择标准进行了全面分析,并就如何驾驭各种特性和功能提供了深入见解。本文探讨影响图像传感器选择的各种因素,旨在帮助工程师和设计人员做出更明智的决策,从而优化性能、效率和整体设计。
我们将选择标准分为三大类:
· 成像性能
· 产品/系统参数
· 工具和其他标准
选择图像传感器的首要考虑因素是成像性能。成像始于图像传感器可捕捉的实际光谱范围。如下图所示,图中的粉红色线条表示图像传感器的硅光电二极管对电磁光谱中人眼无法看到的其他波长的敏感性。这些波长包括波长较短的紫外线(UV)和波长较长的近红外线(NIR)。大多数互补金属氧化物半导体(CMOS)图像传感器的检测范围在350纳米到1000纳米之间。不过,某些技术也可以对短波红外(SWIR)成像,而有些技术则可以进一步延伸到紫外线范围。
温度性能
图像传感器对温度极为敏感,因此必须考虑其在不同曝光和条件下的性能。温度过高或过低以及在较高占空比下长时间运行都会影响传感器的性能。因此,了解温度性能及其如何影响所需应用的成像能力至关重要。
色彩滤波阵列(Color Filter Array,CFA)
传感器的CFA是一种用于解析(或不解析)图像色彩的滤光片,在决定图像的色彩准确度和效果方面起着重要作用。CFA有多种类型,每种类型在色彩准确度、清晰度、光敏感度和图像质量方面都有其优缺点。标准的彩色传感器使用拜耳阵列CFA,它以红、绿、蓝、绿的阵列覆盖像素。这种模式由柯达前员工Bryce Bayer于1976年发明。柯达的成像部门后来被分拆成一家名为True sense的公司,而这家公司于2014年被安森美收购。另一个例子是单色传感器,它提供单一的黑白图像,但灵敏度更高(因为没有彩色 "滤光片"),尤其是在不需要或未提供色彩信息的情况下,例如上述的主动近红外(NIR)照明应用。
特殊类型的CFA,如RCCC(红、透明、透明、透明)、RYYCy(红、黄、黄、青)和RCCB(红、透明、透明、蓝),能够在收集部分色彩信息的同时让更多的光进入像素。这在汽车成像等应用中非常有用,例如可能需要红色来检测刹车灯或交通信号灯,但仍需要最大限度的光量。与此同时,RGB-IR CFA允许像素同时捕捉可见光和红外光,从而使系统能够同时处理和成像这两种类型的光线。
客服热线
400-618-9990 / 13621148533
官方微信
关注微信公众号