高精密气压、高度传感器

主要特点

- 直接读取压力值,高度值,温度值
- ◆ 供电电压: 1.8V~3.6V
- ◆ 扩展压力量程: 300mbar~1200mbar
- 直接读数,补偿:
 - --气压: 20位有效测量位(帕)
 - --高度: 20位有效测量位(米)
 - --温度: 20位有效测量位(摄氏度)
- 可编程事件中断及输出选择
- 高分辨率: 10cm
- ◆ 待机电功耗: < 0.1uA
- 工作温度: -40~+85℃
- ◆ 高速I²C 接口
- 尺寸: 3.8 X3.6 X1.2mm

典型应用

- 手持高度计、气压计
- ◆ 智能手机/平板电脑
- 工业压力和温度传感器系统
- ◆ 运动手表
- 气象站设备
- 室内导航和地图协助
- 压力、 温度和海拔高度数据记录器
- ◆ 应急服务的GPS定位

产品描述

HP203B 是高分辨率(0.1meter)压力传感器,带有 I²C 接口,包括一个硅压阻压力元件和一个高分辨率 24 位△∑ ADC。HP203B 提供高精度 24 位压力和温度数字输出,客户可以根据应用需要转换速度和高度,所有内置计算采用了高速 4M Hz 的浮点运算,计算误差小,数据补偿是内部集成,通讯连接非常简单,高度及温度上下限比较的可编程事件及中断输出控制。HP203B 传感器是采用不锈钢盖子表面封装和符合 RoHS 标准,尺寸非常小,仅为 3.6x3.8mm,厚度为 1.2mm。

1. 方块图

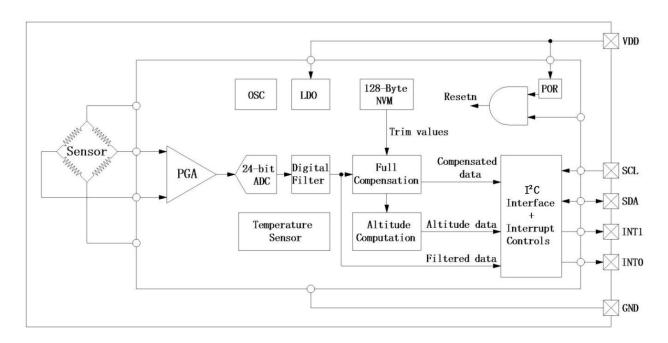


图 1: 内部框图

2. 电气特性

2.1 压力和温度特性

表 1: 压力输出特性@ VDD = 3.0V,T = 25℃,除非另有注明

参数	符号	条件		标准	最大	单位
压力测量范围	P _{FS}		300		1200	mbar
绝对压力精度		700 至 1100毫巴从 0 ℃ 至 50 ℃	-1.5		+1.5	mbar
		700 至 1100毫巴从-20℃ 至 70℃	-3		+3	mbar
相对压力精度		700 至 1100毫巴在25℃		±0.5		mbar
		700 至 1100毫巴从 0℃ 至 50℃		±1.5		mbar
最大误差(电压影响)		电压 1.8 V 到 3.6 V	-2.5		+2.5	mbar
 压力/高度分辨率		压力模式		0.01		mbar
压力/高度分辨率		高度模式		0.1		m
过回流焊漂移		回流焊后		±0.5		mbar
长期漂移		经过1年后		±1.5		mbar
回流焊的曲线		IPC/JEDEC J-STD-020C		±0.5		mbar

表 2: 温度输出特性@ VDD = 3.0V,T = 25℃,除非另有注明

参数	符号	条件	最小	标准	最大	单位
工作温度范围	T _{OP}		-40	25	85	$^{\circ}$
绝对温度精度		在 25℃		±0.3	±0.5	$^{\circ}$
		从 -10℃ 到 +70℃		±0.6	±1.0	$^{\circ}$
		从 -40℃ 到 +85℃		±1.0	±3.0	$^{\circ}$
电压范围最大误差		1.8V 到 3.6V			±0.5	${\mathbb C}$
输出数据的温度分辨率				0.01		${\mathbb C}$

2.2 电气特性

表 3: 直流特性@ VDD = 3.0V,T = 25℃,除非另有注明

参数	符号		环境条件		标准	最大	单位
工作电源电压	V_{DD}			1.8	3.0	3.6	V
工作温度	T _{OP}			-40		85	$^{\circ}$
			4096		91.8		uA
平均工作电流			2048		45.9		
(压力每秒转换一次)	I _{DDAVP}	OSR*	1024		22.9		
			512		11.4		
		_	256		5.7		
			128		2.9		Δ.
T 11 11 - 1 > >			4096		75.4		uA
平均工作电流			2048		37.7		
(温度每秒转换一次)	I _{DDAVT}	OSR*	1024 512		18.8 9.4		
			256		4.7		
		-	128		2.4		
		OSR*	4096		65.6		ms
转换时间 (压力或温度)			2048		32.8		
			1024		16.4		
(压力致血)及)	t _{CONV}		512		8.2		
			256		4.1		
			128		2.1		
峰值电流	I _{PEAK}	在转换过	程中		1.3		mA
静态电流	I _{DDSTB}	At 25℃				0.1	uA
串行数据的时钟频率	f _{SCLK}	I ² C 协议	,10k的上拉电阻		100	400	kHz
数字输入高电压	V _{IH}			0.8			V
数字输入低电压	V _{IL}					0.2	V
数字输出高电压	V _{OH}	I _O = 0.5 mA		0.9			V
数字输出低电压	V _{OL}	I _O = 0.5	I _O = 0.5 mA			0.1	V
输入电容	C _{IN}					4.7	pF

^{*}OSR是过采样率.

2.3 绝对最大额定值

表 4:

参数	符号	状态	最小	最大	单位
过压	P _{MAX}			3	bar
电源电压	V_{DD}		-0.3	3.6	V
接口电压	V_{IF}		-0.3	V _{DD} +0.3	V
操作范围温度	T _{OP}		-40	125	${\mathbb C}$
存储温度范围	T _{STG}		-50	150	$^{\circ}$
最大焊接温度	T _{MS}	最长40秒		250	$^{\circ}$
ESD 额定值		人体模型	-2	+2	kV
闩锁效应电流		在 85℃	-100	100	mA

超出以上所列"绝对最大额定值"可能造成永久性损坏设备。长时间工作在最大额定条件可能影响器件的可靠性。

3. 功能描述

3.1 综述

HP203B是一款超小型集高精度气压计、 高度计和温度计于一体的传感器。内部集成了24位ADC, 硅传感芯片,以及存放内部参数的OTP。该传感器通过设计公司获得的专利补偿算法在传感器器件片内进行采样,信号处理以及运算,最终计算出实际的直接结果值,所以外部应用MCU只需发出信号采集命令,待完成后,再通过I2C接口直接读取压力,温度及绝对海拔高度三者的实际值。

此外,该传感器内部提供了对温度、压力和海拔高度的上下限阈值及中间阀值,并构成的趋势变化的多种事件响应的条件预定设置。当其中任一事件发生达到了预设条件后,在传感器内部状态寄存器会置起相应的标志,并在已经预先设置的相应的中断脚位上输出高电平。

3.2 工厂校准

每个设备都是由工厂单独校准温度和压力测量。修正的值存储在芯片上的 128 字节的非易失性内存 (NVM)。在正常情况下,用户完成没有必要做进一步校准。

3.3 上电自动初始化

一旦传感器检测到外部提供有效的VDD时,内部时序机制就生成内部电源上电复位POR,并自动进入通电初始化序列。初始化完成后,传感器自动进入到睡眠状态。通常的整个的通电时序完成需时大约400us; 当初始化完成,则传感器内部寄存器INT_SRC中的DEV_RDY位会置1,用户可以通过查询它来确认是否完成初始化。

3.4 传感器输出的转换

当每个压力测量时,温度始终是在压力测量时就自动测量,但是测量温度可单独完成。转换结果存储到内嵌存储器,保留其内容后,传感器处于睡眠状态。

转换时间取决于发送到传感器内的ADC CVT命令的DSR参数的值。OSR的六个选项可以选择,范围从128、

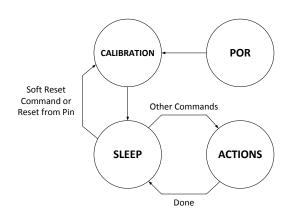
256...到4096。下表显示了不同的转换时间的OSR值:

表 5: 转换时间与 OSR

OSR	转换时间 (毫秒)				
	温度	温度和压力(或高度)			
128	2.1	4.1			
256	4.1	8.2			
512	8.2	16.4			
1024	16.4	32.8			
2048	32.8	65.6			
4096	65.6	131.1			

较高的 OSR 通常会达到更高的测量精度,但消耗更多的功耗和时间。

转换的结果可以有补偿(默认有补偿)或无偿。用户可以启用/禁用补偿。


3.5 高度的计算

内置的高度计算根据了当次测得的压力和温度自动完成当次的绝对海拔高度的运算,并自动将运算结果保存在内部规定的寄存器,用户等转换完压力及温度后,就可读取出相应的高度值。

4. 访问模式和命令

4.1 运作流程

在每次上电/复位,传感器只执行一个校准。在那之后它将进入休眠状态等待任何传入的命令。它会接收不同的正确命令后,进行相应的执行,当它完成任务后,重新进入睡眠状态。

4.2 命令

命令集(表6)允许用户控制传感器进行配置及结果读取。

表 6: 命令集

名称	十六进制编码	二进制编码	描述
SOFT_RST	0x06	0000 0110	软复位命令
ADC_CVT	NA	010_dsr_chnl	OSR设定,通道选择,执行转换
READ_PT	0x10	0001 0000	读取温度和压力值
READ_AT	0x11	0001 0001	读取温度和海拔值
READ_P	0x30	0011 0000	只读取压力值
READ_A	0x31	0011 0001	只读取高度值
READ_T	0x32	0011 0010	只读取温度值
ANA_CAL	0x28	0010 1000	重新校准内部模拟电路
READ_REG	NA	10_addr	读取控制寄存器
WRITE_REG	NA	11_addr	写入控制寄存器

4.2.1 软重启

.SOFT_RST (0x06)

软复位命令。不管当时传感器的工作模式,一旦接收到此命令,传感器就立即自动复位,内部所有的寄存器 将被重置为默认值后重新进入睡眠状态,等待接受主机来的命令。

4. 2. 2 OSR 和通道设置

.ADC_CVT (010, 3-bit OSR, 2-bit CHNL)

这个命令选择传感器内部的过采样率 OSR、传感信号输入通道 CHNL 及执行 ADC 的转换。具体的控制位说明如下:

bit1,bit0	CHNL
00	压力和温度的通道
10	温度的通道

3 位 OSR 定义的内部数字滤波器的采样率如下所示:

bit4,bit3,bit2	OSR	说明
000	4096	
001	2048	
010	1024	
011	512	
100	256	默认值
101	128	

注意:设置通道如果为 01 或 11 的价值,或 OSR 的为 110 或 111 的值将导致转换失败。

例如: OSR = 256, 选择温度通道,则二进制为 01010010,此时 ADC_CVT=0x52。

4.2.3 读取温度和压力值

.READ_PT (0x10)

温度数据由 20 位 2 的补码格式组成,单位为摄氏度。温度的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表温度的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

气压数据由 20 位 2 的补码格式组成,单位为帕。气压的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表气压的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

例子:(温度)

十六进制值	OUT_T_MSB	OUT_T_CSB	OUT_T_LSB	十进制值
0x000A5C	0x00	0x0A	0x5C	26.52
0xFFFC02	0xFF	0xFC	0x02	-10.22

例子:(气压)

十六进制值	OUT_ P _MSB	OUT_ P_CSB	OUT_ P_LSB	十进制值
0x018A9E	0x01	0x8A	0x9E	1010.22

4.2.4 读取温度和高度值

.READ AT (0x11)

温度数据由 20 位 2 的补码格式组成,单位为摄氏度。温度的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表温度的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

高度数据由 20 位 2 的补码格式组成,单位为米。高度的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表高度的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

例子:(高度)

十六进制值	OUT_A_MSB	OUT_A_CSB	OUT_A_LSB	十进制值
0x001388	0x00	0x13	0x88	50.00
0xFFEC78	0xFF	0xEC	0x78	-50.00

4.2.5 读取气压值

.READ_P (0x30)

气压数据由 20 位 2 的补码格式组成,单位为帕。气压的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表气压的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

4.2.6 读取高度值

.READ_A (0x31)

高度数据由 20 位 2 的补码格式组成,单位为米。高度的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表高度的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

4.2.7 读取温度值

.READ_T (0x32)

温度数据由 20 位 2 的补码格式组成,单位为摄氏度。温度的值由 24 位 OUT_T_MSB,OUT_T_CSB OUT_T_LSB 存储。最高 4 位的数据是无用,而最低有效 20 位代表温度的值。用户应当把这 20 位以 2 的补码的二进制值转换成一个整数,然后整数除以 100 获得最终结果。

4.2.8 内部模拟电路

.ANA_CAL (0x28)

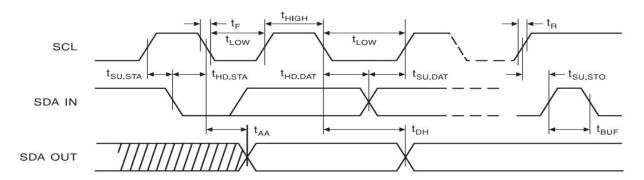
此命令允许用户在更短的时间内进行调整内部电路。它是专为应用程序的设备需要在快速变化的环境中工作。在这些环境中,由于温度和电源电压可能大幅改变自第一升高序列校准一直执行期间,在可能不熟练电路也一样有更好的校准。因此,在这种情况下,重新校准之前执行任何传感器转换电路能给一个更准确的结果。一旦设备收到这个命令,它开放度下降的所有电路和结束时进入睡眠状态。用户可以简单地向设备发送此命令之前发送ADC CVT命令。然而,环境是稳定的没有必要使用此命令。

READ_REG (0x80+6位寄存器地址)

此命令允许用户读取控制寄存器。

WRITE_REG (0xC0+6位寄存器地址)

此命令允许用户写入控制寄存器。


5. I²C 接口

传感器的 I2C 接口是与官方标准的 I2C 协议规范完全兼容。所有的数据发送从 MSB 开始,主机和通过 I2C 总线的传感器之间的通信可以通过下面介绍的四种类型进行。

5.1 I2C 规范

表7: PC从时序值

会业	/// U	I ² C				**
参数	符号	条件	最小	标准	最大	单位
时钟频率	Fscl	Pull-up = 10kΩ		100	400	KHz
新的发送开始前总线空闲时间	t _{BUF}		1.5			μs
起始信号保持时间	t _{HD.STA}		0.6			μs
起始信号建立时间	t _{SU.STA}		0.6			μs
停止信号建立时间	t _{SU.STO}		0.6			μs
数据输入保持时间	t _{HD.DAT}		100			ns
数据输入建立时间	t _{SU.DAT}		100			ns
时钟低电平周期	t_{LOW}		1.5			μs
时钟高电平周期	t _{HIGH}		0.6			μs
SDA及SCL上升时间	t _R		30		500	ns
SDA及SCL下降时间	t _F		30		500	ns

5.2 I2C 设备寄存器地址

I²C设备地址如下所示。设备地址的LSB是由CSB脚的状态决定。

CSB PIN=0: 对应的地址0XEE (write) and 0XEF (read).

CSB PIN=1: 对应的地址0XEC (write) and 0XED (read).

A7	A6	A5	A4	A3	A2	A1	W/R
1	1	1	0	1	1	CSB =0:1 CSB =1:0	0/1

5.3 I2C 协议

第一类: 主机发出一个单字节命令的类型。

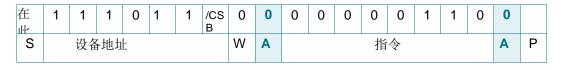
主机发出设备地址(ID)并跟随写位 W 位,收到答复 ACK 位后,发出命令字节,传感器收到后,地回 ACK. 如下是发出一个 SOFT_RST 命令。

	1	1	1	0	1	1	/CS B	0	0	0	0	0	0	0	1	1	0	0	
S		设备5	也址					W	Α				指	*				Α	Р

第二类: 主机写入寄存器的类型。

主机发出设备地址(ID)并跟随写位 W 位,收到答复 ACK 位后,发出命令字节及一个字节的数据。这种格式仅适用于当用户想要发出一个 WRITE_REG 命令。

	1	1	1	0	1	1	/CSB	0	0	1	1	0	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0	
S		设	:备t	也址	Ŀ			W	A				指					A				数	据				A	Р


第三类: 主机从设备读取寄存器的类型。

在这第三类型中共有两帧并分别发送。第一帧是发送包含高 2 位二进制数 10 及后面跟着低 6 位的寄存器地址的 READ_REG 命令。第一帧的格式与第一类的相同。在第二帧,该传感器将发送回寄存器中的数据当收到正确的设备地址及读位(R)之后。这种类型仅适用于使用 READ_REG 命令。

	1	1	1	0	1	1	/CSB	0	0	1	0	0	()	0	1	1	0	0	
*		访	各	地均	Ŀ			W	A		指	\$\phi\$						A	Р

	1	1	1	0	1	1	/CSB	1	0	1	0	0	1	0	1	1	0	1	
S		设备	地址					R	A				数	据				Ν	Р

第四类: 主机从设备读3字节或6字ADC数据

	1	1	1	0	1	1	/CS B	1	0	0	1	0	0	0	1	1	0	8	0	0	1	1	0	1	0	0	1	
S		į	设备	地址	Ŀ			R	Α			数排	字	节6	或3			(Å			数	据字	艺节	1			Ν	Р

Bit Descriptions

 从主机
 从芯片

 S 起始位
 P 停止位

 W 写
 R 读

 A 正确应答
 N 否定回答

CSB 传感器 CSB引脚

6. 控制寄存器

控制寄存器允许用户设置的各种事件的检测阀值,配置中断设置,并启用/禁用数据补偿。建议用户设置这些寄存器到所需的值进行转换或任何其他基于命令的操作之前。下面是一个表的所有控制寄存器。

从 0x00 到 0x0a 寄存器是专为用户设置的参数(偏移和阀值)压力(或高度)和温度的事件检测。从 0x0b 到 0x0d 寄存器用于中断控制。的注册为 0x0e 开关传感器输出补偿功能的设备内部专用。

表 8: 控制寄存器列表

Addr	Name	Default	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	ALT_OFF_LS B	0x00				A	LT_OFF [7:0]			
0x01	ALT_OFF_M SB	0x00			·	AL	_T_OFF [15:8]	·		
0x02	PA_H_TH_LS B	0x00				P	A_H_TH [7:0]	<u> </u>		
0x03	PA_H_TH_M SB	0x00				PA	_H_TH [15:8]			
0x04	PA_M_TH_LS B	0x00				P/	A_M_TH [7:0]			
UXUS	PA_M_TH_M SB	0x00				PA	_M_TH [15:8]	<u> </u>		
0x06	PA_L_TH_LS B	0x00				P	A_L_TH [7:0]			
0x07	PA_L_TH_MS B	0x00				P/	_L_TH [15:8]			
0x08	T_H_TH	0x00				Т	_H_TH [7:0]			
0x09	T_M_TH	0x00				Т	_M_TH [7:0]			
0x0A	T_L_TH	0x00				٦	Γ_L_TH [7:0]			
0x0B	INT_EN	0x00	Reserved	Reserved	PA_RDY_EN	T_RDY_EN	PA_TRAV_EN	T_TRAV_EN	PA_WIN_EN	T_WIN_EN
0x0C	INT_CFG	0x00	Reserved	PA_MODE	PA_RDY_CF G	T_RDY_CFG	PA_TRAV_CFG	T_TRAV_CFG	PA_WIN_CFG	T_WIN_CFG
0x0D	INT_SRC	0x00	TH_ERR	DEV_RDY	PA_RDY	T_RDY	PA_TRAV	T_TRAV	PA_WIN	T_WIN
0x0E	INT_DIR	0x00	CMPS_EN	Reserved	Reserved	Reserved	P_TRAV_DIR	T_TRAV_DIR	P_WIN_DIR	T_WIN_DIR
0X0F	PARA	0X80	CMPS_EN	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

6.1 设置高度偏移补偿

6. 1. 1 ALT_OFF_LSB, ALT_OFF_MSB - (RW)

这两个寄存器是 16 位的海拔高度偏移值,数据是以 2 的补码格式,单位是厘米。默认值是 0X00. 如果用户需要使用高度偏移计算功能,需要设置这些寄存器,

通常情况下,在世界不同地方当地的海平面平均标准大气压力值(**P**_{local})是不同的。标准值范围从 1000 毫 巴至 1026 毫巴,此时用户通过对这两个寄存器设置偏移值来满足要求。具体可以参考有关当地官方的标准。

P_{local}的单位是毫巴, Aoffset 的单位为测量器

P _{local}	1000	1001	1002	1003
A _{offset}	-111.18	-102.73	-94.29	-85.85
P _{local}	1004	1005	1006	1007
A _{offset}	-77.43	-69.02	-60.62	-52.23
P _{local}	1008	1009	1010	1011
A _{offset}	-43.84	-35.47	-27.11	-18.76
	•			
P _{local}	1012	1013	1014	1015
A _{offset}	-10.41	-2.08	6.24	14.56
P _{local}	1016	1017	1018	1019
A _{offset}	22.86	31.15	39.44	47.71
P _{local}	1020	1021	1022	1023
A _{offset}	55.98	64.23	72.48	80.71
P _{local}	1024	1025	1026	
A _{offset}	88.94	97.16	105.36	

如果用户发现 P_{local} 值是一个整数,就直接在上面的表中获得相应的高度偏移值;如果 P_{local} 为带小数的值,则据上表查看其落在 P1 和 P2 区间(P1 和 P2 小于表中相邻的两个压力值),就可首先获得相应的高度偏移值 P1 和 P2 人工来计算出 P1 的一个压力值),就可首先获得相应的高度偏移值:

例如,P_{local} =1016.4 毫巴, 这是落在 1016 毫巴(P1)和 1017 毫巴(P2)区间。查表, A1=22.86 米, A2=31.15 米。因此:

无论结果是 26.19 米或是 26.15 米结果都是可以接受的,当然原则上可以看 P_{local}。更接近 P1 还是 P2 而选第一或第二个公式, 最后将 A 值乘以 100 将单位变为厘米,转成 2 的补码 16 进制格式后写到寄存器中。

这两个寄存器是压力或高度的 16 位的上限阀值。

当将 int_cfg 寄存器的 pa_mode 位设置为 0,存储在这些寄存器的值是压力上限阀值。它的值是一个 16 位的 2 的补码格式,其单位为毫巴。 具体看下表范例。

当将int_cfg寄存器中pa_mode位设置为1,存储在这些寄存器的值是高度上限阀值。它的值是一个16位的2的补码格式,其单位是米。 具体看下表范例。

范例:

Offset	Hex Value	ALT_OFF_MSB	ALT_OFF_LSB
50.02 m	0x138A	0x13	0x8A
-100.05 m	OXD8EB	0xD8	0xEB

6.2 设置事件检测上、中、下阀值

6. 2. 1 PA_H_TH_LSB, PA_H_TH_MSB - (RW)

这两个寄存器是压力或高度的16位的上限阀值。

当将 int_cfg 寄存器的 pa_mode 位设置为 0,存储在这些寄存器的值是压力上限阀值。它的值是一个 16 位的 2 的补码格式,其单位为毫巴。 具体看下表范例。

当将int_cfg寄存器中pa_mode位设置为1,存储在这些寄存器的值是高度上限阀值。它的值是一个16位的2的补码格式,其单位是米。 具体看下表范例。

范例: ____

A_MODE =	0 (pressure,	unit in 0.02 mba	ar)
Threshold	Hex Value	PA_H_TH_MSB	PA_H_TH_LSB
800.06 mbar	0x9C43	0x9C	0x43
900 mbar	0xAFC8	0xAF	0xC8
PA_MODE	= 1 (altitude,	unit in meter)	
Threshold	Hex Value	PA_H_TH_MSB	PA_H_TH_LSB
5000 m	0x1388	0x13	0x88

这些例子还应用于设置的压力或高度中间、下限阀值寄存器,下面将介绍。

6. 2. 2 PA_M_TH_LSB, PA_M_TH_MSB - (RW)

这两个寄存器设置的值是检测压力或高度中间阀值。 PA_M_TH 也是16 位的2的补码的值。类似于PA_H_TH,由 PA_MODE 位选择它们的值和数据格式的含义。 中间阀值的意义在于判断趋势是上升还是下降。

6. 2. 3 PA_L_TH_LSB, PA_L_TH_MSB - (RW)

这两个寄存器设置的值是检测压力或高度下限阀值。 PA_L_TH 也是16位的2的补码的值。类似于PA_H_TH,由 PA_MODE 位选择它们的值和数据格式的含义。

6. 2. 4 T H TH - (RW)

此寄存器设置的值是检测 8 位温度的上限阀值。数值是 2 的补码格式,单位是 ℃。

范例:

阀值	十六进制值	T_H_TH
45℃	0x2	0x2
-20℃	0xE	0xE

这些例子也应用于设置温度的中间及下限阀值寄存器,下面将介绍。

6. 2. 5 **T_M_TH - (RW)**

此寄存器设置的值是检测 8 位温度中间阀值。数据是在 2 的补充格式和单位是 ℃。

6. 2. 6 T_L_TH - (RW)

此寄存器设置的值是检测 8 位温度下限阀值。数据是在 2 的补充格式和单位是 ℃。

6.2.7 错误的设置阈值

不正确设置的阀值,例如,设置下限阀值大于上限门槛,将导致传感器的意外结果。所以建议用户在设置完成阀值后通过检查 INT_SRC 寄存器中的 TH_ERR 位的状态判断,这位逻辑为 1则表示发生了错误的设置阀值情况。

6.3 配置中断, 状态

有6个中断,可通过该装置产生。他们是:

6. 3. 1 PA_RDY

表明压力(或高度)进行测量,结果是阅读准备。

6. 3. 2 T_RDY

表明温度进行测量,结果是阅读准备。

6.3.3 PA TRAV

表明压力(或高度)的值已走过最后的测量过程中的阀值。

6.3.4 T TRAV

显示温度值已走过最后的测量过程中的阀值。

6.3.5 PA WIN

表明压力(或高度)的值位于预定义的窗口(在上、下限阀值之间的值)上测量时。

6. 3. 6 T_WIN

显示温度值位于预定义的窗口(在上、下限阀值之间的值)上测量时。

中断的名字之前加上一个"PA"涉及到的压力(或高度)的测量。中断的名字之前加上一个"T"涉及到的温度测量。这些中断都将继续保持高活性高,直到清中断情况发生。清中断条件,设备已收到新的 ADC 结果读取命令或一个新的 ADC 转换命令。

6. 3. 7 INT_EN - (RW)

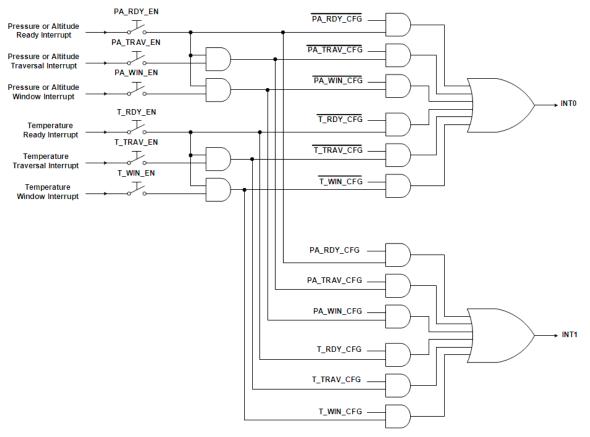
该 INT_EN 寄存器允许用户禁用/启用 6 个中断(0: 1: 禁用,启用)。当用户需要启用遍历或窗口中断,他们还必须使相应的 PA RDY EN 或 T RDY EN bit 点。

6. 3. 8 INT_CFG - (RW)

该 int_cfg 寄存器允许用户选择是否输出中断 INT1 引脚 (0: 不输出,1: 输出)。寄存器还包含一个控制点的 pa_mode",选择是否事件检测参数和中断寄存器之前加上一个"pa_"对应的压力或高度测量 (0: 压力,1: 高度)。

6.3.9 INT_SRC - (只读)

该 int_src 寄存器包含中断标志,让用户知道中断状态,以及设备状态位的 dev_rdy '告诉设备是否已准备好或不访问。设备准备就绪时,处于休眠状态,不进行上电顺序,数据转换,和任何其他基于命令的操作。外部MCU 只能访问设备时,该设备已准备好(dev_rdy = 1)。


如果 int_cfg 位设置为 0, int_en 位设置为 1, 相应的中断标志将出现在 int_src 注册但中断不会输出 INT1 引脚。

6.3.10 INT DIR-(只读)

该 INT_DIR 寄存器允许用户查询是穿越事件还是窗口式事件中断。

对 T_WIN_DIR 和 P_WIN_DIR 两位状态位来说,当窗口式事件产生中断,则表明了温度,压力值或高度值是超出了预设的窗口上下限值。相应的状态位读出来为 1,则超出的是上限值且产生中断;如读出来的状态为 0,则超出的是下限值且产生中断。

对 T_TRAV_DIR 秋 P_TRAV_DIR 两位状态位来说,当穿越式事件产生中断,则表明了温度,压力值或高度值穿越了预设的中间阀值。相应的状态位读出来为 1,则表示实际测量值从低到高的上升了,且超过了设定的中间阀值且产生了中断;如读出来为 0,则表示实际测量值从高到低的下降了,且跌过了设定的中间阀值,并产生了中断。

6.3.11 中断功能

T相关中断一旦生成则温度转换完成。这意味着,一旦外部单片机检测到中断,温度转换的结果是有效的。 PA相关中断一旦生成则气压转换完成。这意味着,一旦外部单片机检测到中断,气压转换的结果是有效的。

然而,增加5us需要计算高度根据温度和压力转换结果。因此,检测PA中断后,单片机必须等待5us以上的延时才能读取高度值。

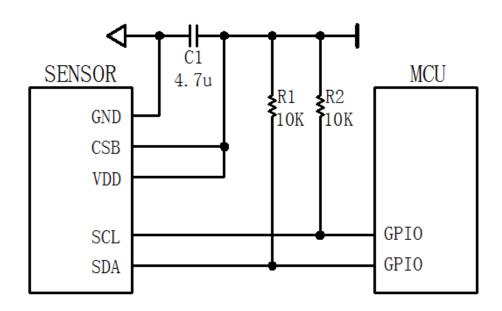
6.3.12 中断清除

ADC_CVT READ_PT或READ_AT命令将清除T_RDY和PA_RDY中断。一旦中断清除"RDY","WIN"和"TRAV"中断同时将被清除。然而,"WIN"、"TRAV"和"DIR"寄存器位会保持它们的值,直到一个新的转换完成。

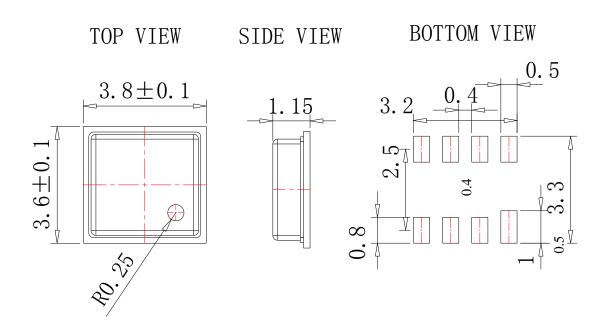
READ_P或READ_A命令只会清除PA_RDY中断。T相关中断和寄存器位将不会改变这两个命令。

READ_T命令只会清除T_RDY中断。PA 相关的中断和寄存器位将不会改变这个命令。

SOFT_RST将清除所有中断以及相关的寄存器位。


清除中断一次设备已确认收到一个有效的命令。然而,这并不一定意味着一个中断命令完全传输后必须低。例如,当一个中断正在通过ADC读命令,它低而数据从设备发送到外部的单片机。

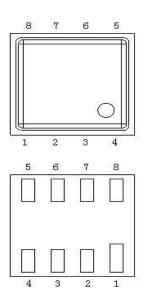
6.4 使能或禁止补偿


PARA - (RW)

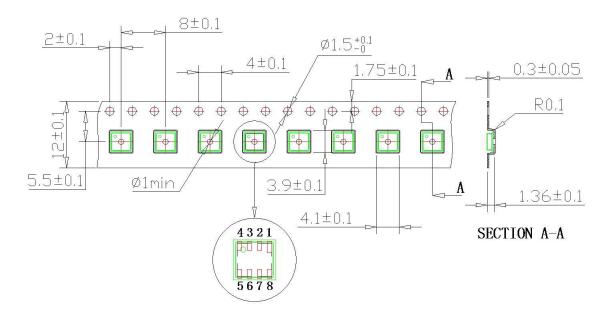
这个寄存器只有一个有效位的cmps_en。用户可以使用此位来确定是否启用转换过程中数据的补偿(0:1:禁用,启用)。如果启用,24位或48位数据读出命令是完全补偿。如果它被禁用,读出的数据输出的原始数据。

7. 典型应用电路

8. 封装 (QFN8)



注:机械尺寸为毫米,一般公差±0.1


9. 强脚配置

表**9** - 引脚描述

14.3	一 기	油灰	
脚位	名字	方向	功能
1	INT1	输出	中断1输出脚
2	GND	输入	供电电源地
3	VDD	输入	供电电源正
4	NC	-	无连接
5	SCL	输入	Ⅰ℃ 串行时钟输入
6	SDA	输出/入	Ⅰ℃ 串行双向数据
7	INT0	输出	中断0输出脚
8	CSB	输入	传感器的I℃ 地址选择脚

10. 包装说明

