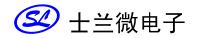

功率因子校正(临界导通模式)控制器

描述

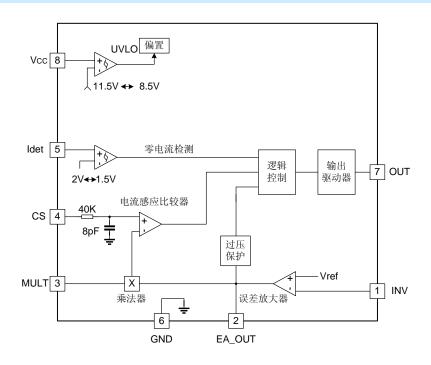
SA7527是一个简单但是高效的功率因子校正电路。这个电路内置R/C滤波器,并自带电流感应电路,因此不需要外部R/C滤波器。此外还有特殊的防击穿电路。此电路适用于电子镇流器和所需体积小,功耗低,外围器件少的高密度电源。输出驱动器钳位电路还可以限制功率MOSFET管的驱动阈值。此电路很大的提高了系统的可靠性。

主要特点

- * 内置启动定时器
- *内部R/C滤波器
- *精确的过电压保护调整
- *零电流检测器
- *一个乘法器
- *可校正的1.5%内部带隙基准
- * 欠电压锁定时有3V滞后
- * 高电平钳位极性输出
- * 启动电流和工作电流低
- * 采用8脚DIP或SOP封装



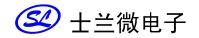
应用


- * 电子镇流器
- * 开关电源

产品规格分类

产品名称	封装形式	打印名称	材料	包装
SA7527	DIP-8-300-2.54	SA7527	无铅	料管
SA7527S	SOP-8-225-1.27	SA7527S	无铅	料管
SA7527STR	SOP-8-225-1.27	SA7527S	无铅	编带

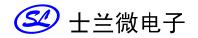
内部框图


极限参数 (Tamb=25°C)

参数	符号	参 数 范 围	单 位
工作电压	Vcc	30	V
峰值驱动输出电流	IOH, IOL	±500	mA
驱动器输出钳位二极管 Vo>Vcc 或Vo<-0.3V	Iclamp	±10	mA
检测器钳位二极管	ldet	±10	mA
误差放大器,乘法器和比较器 输入电压	Vin	-0.3 to 6	V
工作结温	Tj	150	°C
工作温度	Topr	-40 to 125 (注)	Ô
贮存温度	Tstg	-65 to 150	°C
功率消耗	Pd	0.8	W

注: 此工作温度范围只针对 SA7527, 整体功能受外围器件高低温特性制约。

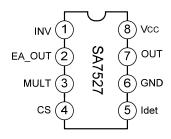
温度特性

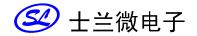

参数	符号	最小值	典型值	最大值	单 位
温度对基准电压影响(Vref)	$\Delta Vref$		20		mV
温度对乘法器增益的影响(K)	ΔΚ/ΔΤ		-0.2		%/°C

电气特性参数(除非特别指定, VCC=14V, -25°C ≤Tamb≤125°C)

Z MeL	<i>FF</i>	Smill S D Art Jul		# ## / *		SL 15
参数	符号	测试条件	載小 值	典型值	最大值	单位
电压锁定单元						
启动门限电压	Vth (st)	VCC增加	10.5	11.5	12.5	V
UVLO 滞后	HY (st)		2	3	4	V
工作电流					<u> </u>	
启动电流	Ist	VCC=Vth(st)-0.2	10	60	100	μΑ
工作电流	ICC	输出不变		3	6	mA
工作电流OVP	ICC(OVP)	Vinv=3V		1.7	4	mA
动态工作电流	IDCC	50kHz, CI=1nF		4	8	mA
误差放大器			1	T	· ·	
电压反馈输入阈值电压	Vref	Iref=0mA, Tamb=25°C	2.465	2.5	2.535	V
电压及	viei	-25≤Tamb≤125°C	2.44	2.5	2.56	V
线路调整率	∆Vref1	14V≤VCC≤25V		0.1	10	mV
温度对Vref的影响 (注)	ΔVref3	-25≤Tamb≤125°C		20		mV
输入偏置电流	lb(ea)		-0.5		0.5	μΑ
输出源电流	Isource	Vm2=4V	-2	-4		mA
输出陷电流	Isink	Vm2=4V	2	4		mA
输出高钳位电压 (注)	Veao(H)	Isource=0.1mA		6		V
输出低钳位电压 (注)	Veao(L)	Isink=0.1mA		2.25		V
大信号开环增益 (注)	Gv		60	80	-	dB
电源抑制比(注)	PSRR	14V≤VCC≤25V	60	80		dB
单一增益带宽(注)	GBW			1		MHz
转换速率(注)	SR			0.6		V/μs
乘法器						•
输入偏置电流 (pin3)	lb(m)		-0.5		0.5	μΑ
M1输入电压范围(pin3)	ΔVm1		0		3.8	V
M2输入电压范围 (pin2)	ΔVm2		Vref		Vref+ 2.5	V
乘法器增益(注)	K	Vm1=1V, Vm2=3.5V	0.36	0.44	0.52	1/V
最大乘法器输出电压	Vomax(m)	Vinv=0V, Vm1=4V	1.65	1.8	1.95	V
温度对K的影响 (注)	ΔΚ/ΔΤ	-25≤Tamb≤125°C		-0.2		%/°C
电流感应						
输入偏移电压(注)	Vio(cs)	Vm1=0V, Vm2=2.2V	-10	3	10	mV
输入偏置电流	lb(cs)	0V≤Vcs≤1.7V	-1	-0.1	1	μА
电流感应输出迟延(注)	td(cs)			200	500	ns

(见下页)


(接上页)


参数	符号	测试条件	最小值	典型值	最大值	单位		
零电压检测								
输入阈值电压	Vth(det)	Vdet 上升	1.7	2	2.3	V		
检测滞后	HY(det)		0.2	0.5	0.8	V		
输入低钳位电压	Vclamp(I)	ldet=-100μA	0.45	0.75	1	V		
输入高钳位电压	Vclamp(h)	Idet=3mA	6.5	7.2	7.9	V		
输入偏置电流	lb(det)	1V≤Vdet≤5V	-1	-0.1	1	μΑ		
输入高电平/低电平钳位二	lalaman (d)				12	mΛ		
极管电流(注)	Iclamp(d)				±3	mA		
输出单元			T	ı	1			
输出高电平电压	Voh	IO=-10mA	10.5	11		V		
输出低电平电压	Voi	IO=10mA		0.8	1	V		
上升时间(注)	tr	C _I =1nF		130	200	ns		
下降时间 (注)	tf	CI=1nF		50	120	ns		
最大输出电压	Vomax(o)	VCC=20V, IO=100μA	12	14	16	V		
UVLO激活时输出电压	Vomin(o)	VCC=5V, IO=100μA			1	V		
重新启动定时器								
启动时间迟延	td(rst)	Vm1=1V, Vm2=3.5V		150		μs		
过电压保护								
软OVP检测电流	Isovp		25	30	35	μΑ		
动态OVP检测电流	ldovp		35	40	45	μΑ		
静态OVP阈值电压	Vovp	Vinv=2.7V	2.1	2.25	2.4	V		

注: 1~14: 这些参数,尽管已经确定,但是没有100%都经过测试。

2. 乘法器增益 k =
$$\frac{\mathsf{pin4_threshold}}{\mathsf{Vm1x}(\mathsf{Vm2-Vref})} \cdots (\mathsf{Vm1} = \mathsf{Vpin3}, \mathsf{Vm2} = \mathsf{Vpin2})$$

管脚排列图

管脚描述

管脚号	管脚名称	功能描述
1	INV	误差放大器的倒相输入。推进转换器的输出应该分配2.5V给INV管脚。
2	EA_OUT	误差放大器的输出管脚。此管脚和INV管脚之间连接一个反馈补偿网络。
3	MULT	乘法器输入管脚。全幅的交流电压分配2V给MULT管脚。
4	CS	PWM比较器输入管脚。MOSFET管电流经过一个电阻后,转变为电压 提供给CS管脚。内置的R/C滤波器可以抑制任何高频噪声。
5	ldet	零电流检测输入管脚。
6	GND	接地管脚。
7	OUT	阈值驱动器输出管脚。这个推挽输出级的峰值电流500mA可以驱动功率MOSFET管。
8	Vcc	驱动器和控制电路的工作电压。

电气特性曲线

图 1. 误差放大器输出电压vs 电流感应

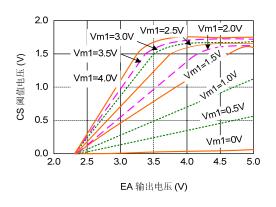


图3.工作电流vs工作电压

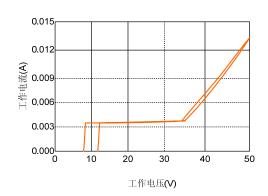
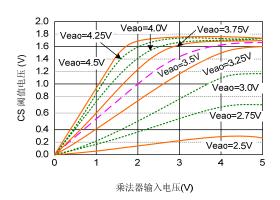
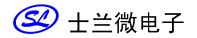
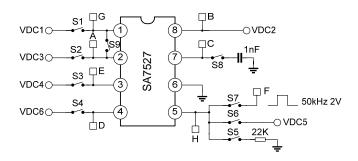
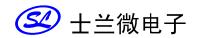
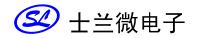





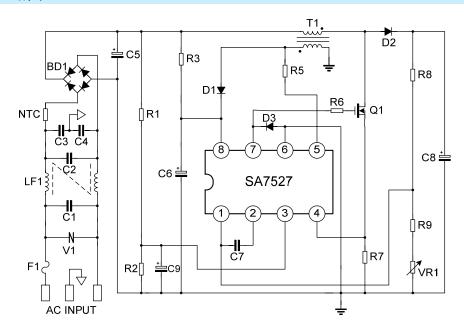
图 2. 乘法器输入电压vs 电流感应


测试电路图

测试方法(非特别指出, VDC2=14V)


参 数	闭合开关	外加电压(V)	测试点	备注
Vth(st)	S2,S3,S4,S5	VDC3=3,VDC4=1, VDC6=0	В	VDC2 增加,C 电平跳变
HY(st)	同上	同上	В	接上,VDC2减小,C电平跳变
I(st)	同上	同上	В	VDC2= Vth(st)-0.2
I(cc)	同上	同上	В	
Icc(ovp)	S1	VDC1=3	В	
Idcc	S1,S3,S4,S7, S8	VDC6=0	В	F 点加 50kHz,2V 方波
Vref	S9		G	
∆ Vref	S9		G	VDC2=14V、25V
lb(ea)	S1	VDC1 变化	G	
I(source)	S1,S2	VDC1=0,VDC3=4	Α	
I(sink)	S1,S2	VDC1=3,VDC3=4	Α	
Veao(H)	S1	VDC1=0	Α	A 点拉电流 0.1mA
Veao(L)	S1	VDC1=3	Α	A 点灌电流 0.1mA
lb(m)	S3		Е	VDC4:0~4V 变化
		VDC1=2 , 初 始		依次微调 VDC6,VDC4(调大),
∆ Vm1	S1,S3,S4,S5	VDC4,VDC6 低,使	Е	使 C 点高低变化。直至调
		得C电平高。		VDC4 无影响。
	64 60 60 64	VDC1=2,VDC4=1 ,		依次微调 VDC6,VDC3(调大),
∆ Vm2	S1,S2,S3,S4,	初始 VDC3, VDC6	Α	使 C 点高低变化。直至调
	S5	低, 使得 C 电平高。		VDC3 无影响。
IZ.	64 60 60 64	VDC1=2V,VDC3=3.5		调 VDC6(增加),使 C 点跳变,
K	S1,S2,S3,S4	VDC4=1V		K=VDC6/(VDC3*VDC4)

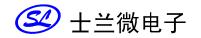
(见下页)



(接上页)

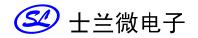
参 数	闭合开关	外加电压(V)	测试点	备注
Vomax	S1,S3,S4,S5	VDC1=2V, VDC4=4	D	调 VDC6(增加),使 C 点跳变,
lb(cs)	S4		D	VDC6:0~1.7V 变化
Vth(det)	S1,S2,S3,S4, S6	VDC1=2V,DC3=3,V DC4=1,VDC6=0,	G	VDC5 增加,使 C 跳变
HY(det)	同上	同上	G	接上, VDC5 减小, 使 C 跳变
Vclamp(L)			G	G 点灌 100uA 电流
Vclamp(H)			G	G 点拉 3mA 电流
lb(det)	S6		G	VDC5:1~5V 变化
Voh	\$1,\$2,\$3,\$4, \$5	VDC1=2,VDC6=0	С	C 点拉 10mA
Vol	\$1,\$2,\$3,\$4, \$5	VDC1=2,VDC6=2	С	C 点灌 10mA
tr	\$1,\$2,\$3,\$4, \$7	VDC1=2,VDC6=0	С	F 点加 50kHz,2V 方波
tf	\$1,\$2,\$3,\$4, \$7	VDC1=2,VDC6=0	С	F 点加 50kHz,2V 方波
Vomax(o)	S1,S2,S3,S4, S5	VDC1=2,VDC2=20	С	C 点拉 100uA
Vomin(o)	\$1,\$2,\$3,\$4, \$5	VDC1=2,VDC2=5	С	C 点拉 100uA
td(rst)	S1,S2,S3,S5	VDC1=2,VDC3=3.5, VDC4=1	С	D 点加 2 伏约 10KHz, 10us 脉 宽左右的窄脉冲 (注 1)
Isovp	S1,S3,S4,S5	VDC1=2,VDC6=0	А	A 点注入静态电流,使得 C 点 为低
ldovp	S1,S3,S4,S5	VDC1=2,VDC6=0	А	A 点注入动态电流,使得 C 点 为低
Vovp	\$1,\$2,\$3,\$4, \$5	VDC1=2.7,VDC4=1, VDC6=0	А	VDC3 增加,使得 C 点为低

典型应用电路图

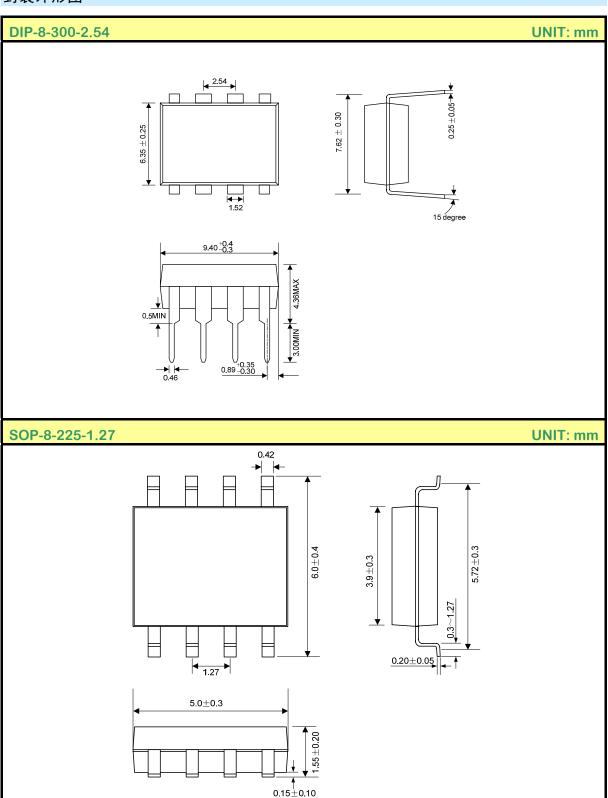


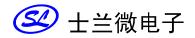
注: 以上线路及参数仅供参考,实际的应用电路请在进行充分的实测基础上设定参数。

应用电路图元件列表


— nl	/±	\ -	F ±
元 件	值	注	厂商
R1	1.8MΩ	1/4W	-
R2	18kΩ	1/4W	-
R3	120kΩ	1W	-
R5	22k Ω	1/4W	-
R6	10Ω	1/4W	-
R7	3.0Ω	1W	-
R8	1ΜΩ	1/4W	-
R9	6kΩ	1/4W	-
VR1	103	可变电阻	-
C1	47nF, 275vac	Box-Cap	-
C2	100nF, 275vac	Box-Cap	-
C3,4	2200pF, 3000V	Y-Cap	-
C5	0.1μF, 630V	Miller-Cap	-
C6	47μF, 35V	电解电容	-
C7	1μF	MLCC	-
C8	22μF, 450V	电解电容	-

(见下页)




(接上页)

元 件	值	注	厂商
C9	1nF, 25V	陶瓷电容	-
BD1	600V/4A	电桥二极管	-
D1,3	75V, 150mA	IN4148	-
D2	600V, 1A	BYV26C	-
LF1	45mH	线性滤波器	-
T1	1.76mH(122T:10T)	El2219	-
Q1	500V, 2.3A	FQPF4N50	Fairchild
F1	250V, 3A	保险丝	-
V1	470V	471	-
NTC	10Ω	10D09	-

封装外形图

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否 完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

附:

修改记录:

日期	版本号	描述	页码
2003.06.13	1.0	原版	
2010.06.25	1.1	修改极限参数表格中的工作温度下限;补充产品规格分类 的信息	
2010.10.28	1.2	修改说明书模板	